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Abstract: There is a question of how a spatial polygonal arc in 3-space such as a linear molecule, a protein, a non-circular 

DNA, or a linear polymer, etc. is considered as a knot object. This paper answers it by introducing a notion of knotting 

probability of a spatial arc. As a tool, the knotting probability of an arc diagram which is invariant under isomorphisms of arc 

diagrams has been already established by the author, which measures how many non-trivial ribbon surface-knots of genus 2 in 

the 4-space occur when the arc diagram is regarded as a ribbon chord diagram in a 4D research object. A main task of this 

paper is to show how to obtain an arc diagram uniquely up to isomorphisms from a given oriented spatial polygonal arc. The 

image of an oriented spatial polygonal arc under the orthogonal projection from the 3-space to a plane along a unit normal 

vector is not always any arc diagram. It is shown that an arc diagram unique up to isomorphisms which is determined only by 

the unit normal vector can be obtained by approximating the projection image of an oriented spatial polygonal arc. By 

combining the resulting arc diagram with the knotting probability of an arc diagram already established, the knotting 

probability of every spatial polygonal arc belonging to a unit vector is defined. It is also observed that every oriented spatial 

polygonal arc (except for the case of a polygonal arc contained in a straight line segment) in 3-space admits a unique 

orthonormal basis of the 3-space. Thus, the knotting probability of a spatial polygonal arc in 3-space is defined. The knotting 

probabilities of three concrete examples on oriented spatial polygonal arcs are computed. 

Keywords: Arc Diagram, Approximation, Spatial Arc, Knotting Probability 

 

1. Introduction 

A spatial arc is a polygonal arc (not a straight line 

segment) embedded in the 3-space R
3
, which is considered as 

a model of a protein or a linear polymer in science. The 

following question on science is an interesting question that 

can be set as a mathematical question: 

Question. How a linear scientific object such as a linear 

molecule, a protein, a non-circular DNA, a linear polymer, 

… is considered as a knot object? 

The main purpose of this paper is to show that the 

projection image of an oriented spatial arc into the oriented 

plane is approximated uniquely (up to isomorphic arc 

diagrams) to an arc diagram specified uniquely by the spatial 

arc and the projection direction. This argument is related to a 

known argument transforming a classical knot in R
3
 into a 

regular knot diagram. [1, 3] By this argument, the typical 12 

arc diagrams determined uniquely (up to isomorphic arc 

diagrams) by the spatial arc are canonically specified so that 

the orientation change of the spatial arc makes only a 

substitution for these arc diagrams. Let 

S
2
={ v∈R

3
 | ||v||=1} 

be the unit sphere, where ||v|| denotes the norm of a vector 

v∈R
3
. Every element u∈S

2
 is regarded as a unit vector from 

the origin 0. For a unit vector u, let Pu denote the oriented 

plane containing the origin 0 such that the unit vector u is a 

positive normal vector to Pu. The orthogonal projection from 

R
3
 to the plane Pu is called the projection along the unit 

vector u∈S
2
 and denoted by 

λu: R
3
→Pu. 

For a small positive number δ, a δ-approximation of the 

projection λu: R
3
→ Pu along u∈S

2
 is the projection λw: 

R
3
→Pw along a unit vector w∈S

2
 with ||w-u||<δ, which is 
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denoted by 

λu
δ
: R

3
→Pu. 

The projection image λu(L) of a spatial arc L in Pu is an arc 

diagram in the oriented plane Pu if λu(L) has only crossing 

points (namely, transversely intersecting double points with 

over-under information) and further the starting and terminal 

points as single points. The arc diagram (Pu, λu(L)) is also 

denoted by (P, D). An arc diagram (P, D) is isomorphic to an 

arc diagram (P’, D’) if there is an orientation-preserving 

homeomorphism f: P→P’ sending D to D’ which preserves 

the crossing points of D and D’, and the starting and terminal 

points of D and D’. The map f is called an isomorphism from 

D to D’. In an illustration of an arc diagram, it is convenient 

to illustrate an arc diagram with smooth edges in the class of 

isomorphic arc diagrams instead of a polygonal arc diagram. 

In this paper, the following observation is shown. 

Theorem 1.1. Let L be an oriented arc in R
3
, and λu: R

3
→ 

Pu the projection along a unit vector u ∈ S
2
. For any 

sufficiently small positive number δ, the projection λu has a 

δ-approximation 

λu
δ
: R

3
→ Pu 

such that the projection image λu
δ
(L) is an arc diagram 

specified from L and λu uniquely up to isomorphic arc 

diagrams. 

The proof of Theorem 1.1 is done in Section 2. By the 

author’s precedent study, the knotting probability 

p(D) = (p
I
(D), p

II
(D), p

III
(D), p

IV
(D)) 

of an arc diagram D is defined so that it is unique up to 

isomorphic arc diagrams. [10] The knotting probability p(L; 

u) of an oriented spatial arc L for every unit vector u∈S
2
 is 

defined by 

p(L;u)=p(D(L;u)) 

for the arc diagram D(L;u)=λu
δ
 (L). More details are 

discussed in Section 3. 

We mention here a brief history on researches of knotting 

probability of a spatial arc. A study of knotting probability on 

a circular knot has first appeared from the viewpoint of a 

random knotting different from our viewpoint. [2, 13] Then a 

study of knotting probability of a spatial arc from a random 

knotting viewpoint appeared with the same motivation as the 

present question. [12] Some protein knotting data are listed in 

“KnotProt” (https://knotprot.cent.uw.edu.pl/). Another study 

of knotting probability on a spatial arc appeared by using a 

knotting structure of a spatial graph but with the demerit that 

it depends on the heights of the crossing points of a diagram 

of the spatial arc. [4, 6] 

In Section 2, the proof of Theorem 1.1 is done. In Section 

3, the knotting probability of a spatial arc with a given 

direction of the projection is explained. In Section 4, the 

knotting probabilities of some spatial arcs are computed. 

2. Proof of Theorem 1.1 

Let L be an oriented spatial arc with the starting point s 

and the terminal point t. Let u(β)	∈S
2
 be the unit vector of an 

oriented (straight) line β in R
3
. The front edge of L is the line 

segment γ in R
3
 joining the starting point s and the terminal 

point t. Orient γ by the orientation from s to t. The front line 

β(γ) is the oriented line extending the oriented front edge γ of 

L. The unit vector u(γ) of β(γ) is called the front edge vector 

of L. An edge line of L is an oriented line in R
3
 extending an 

oriented edge of L. The starting front-pop line of L is the 

edge line β(s) of the edge which pops for the first time from 

the front line β(γ) when a point is going on the oriented 

spatial arc L. The ending front-pop line of L is the edge line 

β(t) of the edge which reaches the front line β(γ) at the end 

when a point is going on the oriented spatial arc L. The unit 

vectors of β(s) and β(t) are called the starting and terminal 

front-pop vectors and denoted by u(s) and u(t), respectively. 

The starting front-pop plane of L is the oriented plane P(γ,s) 

determined by the front line β(γ) and the starting pop line 

β(s) in this order. The terminal front-pop plane of L is the 

oriented plane P(γ,t) determined by the front line β(γ) and the 

terminal pop line β(t) in this order. For a plane P in R
3
, the 

great circle C of P is the great circle in S
2
 obtained as the 

intersection of S
2
 and the plane P’ with the origin 0 which is 

parallel to P. 

Definition. The trace set T of L is the subset of S
2
 

consisting of the unit vectors and the great circles obtained 

from L in the following cases (i) and (ii). 

(i). The great circle C of the plane determined by an edge 

line β and a vertex v of L disjoint from β or the plane 

determined the front line β(γ) and a vertex v of L 

disjoint from β(γ). 

(ii). The unit vectors ±u(η)	∈S2 of an oriented line η in R3 

intersecting three lines consisting of three distinct edge 

lines βi (i = 1, 2, 3) or two distinct edge lines βi (i=1, 

2) and the front line β(γ) of L any two lines of which 

are not on the same plane. 

It is known that the set X consisting of the unit vectors 

±u(η)	∈S
2
 in (ii) is a piecewise smooth graph in S

2
 invariant 

under the antipodal involution -1 of S
2
 sending (x, y, z) to (-

x,-y,-z). [1, 3, 14] In fact, X is considered as the union Y∪-

1(Y) for a conic section Y of a quadratic surface in R
3
. Thus, 

the trace set T is a piecewise smooth graph in S
2
 which is 

invariant under the antipodal involution -1. The following 

lemma is shown. 

Lemma 2.1. For every unit vector u∈S
2
-T, the projection 

image λu(L) is an arc diagram in the plane Pu which is 

independent of a choice of unit vector u in a connected 

component R of S
2
-T up to isomorphisms. 

Proof of Lemma 2.1. The unit vectors ±u(η)	∈S
2
 of a line η 

joining two distinct vertexes of L are in T by (i). Let a unit 

vector u∈S
2
 be not in (i). Then the set of vertexes of L is 

embedded in Pu by λu. Every edge line and the front line β(γ) 

of L are embedded in the plane Pu by the projection λu so that 

any two distinct parallel lines on them are disjointedly 

embedded in Pu (since λu is a linear map). Further, the image 

of the set of vertexes of L is disjoint from the images of the 
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interiors of all the edges of L and the front edge γ. If a unit 

vector u∈S
2
 is in neither (i) nor (ii), then the images of the 

edges of L intersect only among the images of the interiors of 

the edges of L. Every intersection point is a double point, 

since a line η in R
3
 intersecting three distinct lines in the edge 

lines and the front line β(γ) of L is in the trace set T. Thus, 

the projection image λu(L) is an arc diagram in the plane Pu. 

Let R be a connected component of S
2
-T. The arc diagram 

λu(L) is the same arc diagram up to isomorphisms for all unit 

vectors u in a connected open neighborhood in R and thus for 

all unit vectors u in R. This completes the proof of Lemma 

2.1. 

The proof of Theorem 1.1 is done as follows: 

Proof of Theorem 1.1. The idea of the proof is to specify, 

for any given unit vector u ∈ S
2
, a unique connected 

component R of S
2-

T such that R intersects any small open 

neighborhood of u in R
3
. If u∈S

2-
T, then take the connected 

component R containing u. Assume that u∈T. To do this 

specification, for any given oriented spatial arc L, the new x-

axis, y-axis and z-axis of the 3-space R
3
 are set as follows: 

The front edge vector u(γ) of the front edge γ is taken as 

the unit vector of the x-axis: 

u(γ)=ux=(1, 0, 0). 

Let uy∈S
2
 be the unit vector orthogonal to the front edge 

vector ux=u(γ) in the starting front-pop plane P(γ, s) of L with 

the inner product (uy,u(s)) positive for the starting front-pop 

vector u(s). The unit vector uy is taken as the unit vector of 

the y-axis: 

uy=(0, 1, 0). 

The exterior product uz= ux×uy gives the z-axis: 

uz=(0, 0, 1). 

Note that the unit vectors ux, uy, uz are uniquely specified 

by the oriented spatial arc L. Under this setting of the 

coordinate axis, let S
2
 be the unit sphere which is the union 

of the upper hemisphere S
2
(+), the equatorial circle S

2
(0) and 

the lower hemisphere S
2
(-) given as follows: 

S
2
(+)={(x, y, z)	∈R

3
 | x

2
+y

2
+z

2
=1, z>0}, 

S
2
(0)={(x, y, z)	∈R

3
 | x

2
+y

2
+z

2
=1, z=0}, 

S
2
(-)={(x, y, z)	∈R

3
 | x

2
+y

2
+z

2
 =1, z<0}. 

The equatorial circle S
2
(0) belongs to T since the starting 

front-pop plane P(γ, s) of L coincides with the plane with z=0. 

Every unit vector u∈S
2
(+)∪S

2
(0) except for the north pole (0, 

0, 1) is uniquely written as 

u=φ(r, θ)=(r cos θ, r sin θ, √1 − ��) 

for real numbers r and θ with 0<r≦1 and 0≦θ<2π in a 

unique way. 

Case 1: u=φ(r,θ)	∈S
2
(+)-{(0,0,1)}.  

Consider the half-open arc 

φr[θ,θ+ε)={φ(r, θ+)| θ≦θ+<θ+ε} 

for a sufficiently small positive number ε. If φr[θ,θ+ε) meets 

T only with u, then specify as R the connected component of 

S
2
(+)-T containing the open arc φr[θ,θ+ε)-{u}. If the half-

open arc φr[θ,θ+ε) is in T for a sufficiently small positive 

number ε, then consider a sufficiently small disk d in S
2
 with 

the center u so that the intersection I1=φr[θ,θ+ε)∩d is a line 

segment in φr[θ,θ+ε) and the intersection T∩d is the union of 

simple arcs Ii (i= 1, 2,..., m) in d meeting only at u and 

joining u with boundary points bi (i= 1, 2,..., m) of d. Since 

the disk d is canonically oriented, assume that the points bi 

(i= 1, 2,..., m) are enumerated along the orientation of the 

boundary circle of d. Then specify as R the connected 

component of S
2
(+)-T containing the interior of the region in 

d bounded by I1 and I2 among the regions in d divided by Ii 

(i= 1, 2,..., m). 

Case 2: u=(0,0,1)	∈S
2
(+).  

The half-open arc  

φ
0
[0,r) = {φ(r-, 0)| 0≦r-<r} 

is considered for a sufficiently small positive number r. If the 

half-open arc φ
0
[0,r) meets T only with u, then specify as R 

the connected component of S
2
(+)-T containing the open arc 

φ
0
[0,r)-{u}. 

If the half-open arc φ
0
[0,r) is in T for a sufficiently small 

positive number r, then a sufficiently small disk d in S
2
 with 

the center u is considered so that the intersection 

I1=φ
0
[0,r)∩d is a line segment in φ0[0,r) and the intersection 

T∩d is the union of simple arcs Ii (i= 1, 2,..., m) in d meeting 

only at u and joining u with boundary points bi (i= 1, 2,..., m) 

of d. Since the disk d is canonically oriented, assume that the 

points bi (i= 1, 2,..., m) are enumerated along the orientation 

of the boundary circle of d. Then specify as R the connected 

component of S
2
(+)-T containing the interior of the region in 

d bounded by I1 and I2 among the regions in d divided by Ii 

(i= 1, 2,..., m). 

Case 3: u=φ(1,θ)	∈S
2
(0).  

Let 0≦θ<π. Consider the half-open arc 

φ1[θ,θ+ε)={φ(1,θ+)| θ≦θ+<θ+ε} 

for a sufficiently small positive number ε with θ+ε<π. Since 

the half-open arc φ1[θ,θ+ε) is in T, consider a sufficiently 

small disk d in S
2
 with the center u so that the intersection 

I1=φ1[θ,θ+ε)∩d is a line segment in φ1[θ,θ+ε) and the 

intersection T∩d is the union of simple arcs Ii (i= 1, 2,..., m) 

in d meeting only at u and joining u with boundary points bi 

(i= 1, 2,..., m) of d. Since the disk d is canonically oriented, 

assume that the points bi (i= 1, 2,..., m) are enumerated along 

the orientation of the boundary circle of d. Then specify as R 

the connected component of S
2
(+)-T containing the interior 

of the region in d bounded by I1 and I2 among the regions in 

d divided by Ii (i= 1, 2,..., m). Let π≦θ<2π. Since the 

antipodal vector-u=φ(1,θ-π) of u is in S
2
(0) with 0≦θ-π<π, 
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let R(-) be the connected component of S
2
-T specified for-u. 

As the connected component R of S
2
-T for u, specify the 

image of R(-) under the antipodal involution -1 of S
2
. 

Case 4: u∈S
2
(-). 

Since the antipodal unit vector -u of u is in S
2
(+), let R(-) 

be the connected component of S
2
-T specified for -u in Cases 

1 and 2. As the connected component R of S
2
-T for u, specify 

the image of R(-) under the antipodal map -1 of S
2
. 

Thus, for every unit vector u∈S
2
, the connected component 

R of S
2
-T is uniquely specified. By Lemma 2.1, for every 

unit vector u∈R, the image λu(L) of L under the projection λu: 

R
3
→ Pu along u is an arc diagram determined from L and λu 

uniquely up to isomorphisms. Since any open neighborhood 

of the unit vector u in R
3
 intersects the specified connected 

component R, for every u∈S
2
 and every δ>0, there is a unit 

vector w in the specified component R for u such that ||w-

u||<δ and the projection λw: R
3
 → Pw along w is a desired δ-

approximation λu
δ
: R

3
 → Pu of the projection λu: R

3
→ Pu 

along u. This completes the proof of Theorem 1.1. 

The orthogonal projection λu: R
3
→ Pu for the unit vector u 

=ux, uy or uz in the proof of Theorem 1.1 is denoted by 

λx: R
3
→ Px, λy: R

3
→ Py or λz: R

3
→ Pz, 

and the arc diagram D(L;u)=λu
δ
(L) is denoted by D(L;x), 

D(L;y) or D(L;z), respectively. The arc diagram D(L;-u) is also 

denoted by D(L;-x), D(L;-y) or D(L;-z), respectively. An arc 

diagram D in a plane P is inbound if the starting point s and the 

terminal point t of the arc diagram D are in the same region of 

the plane P divided by the arc diagram D. More generally, the 

projection image λu(L) of a spatial arc L which need not be an 

arc diagram is inbound if the projection images λu(L-∂γ) and 

λu(γ) are disjoint for the front edge γ of L. A spatial arc L is an 

arc knot if the union cl(L) of L and the front edge γ of L is a 

knot (i.e., a simple closed curve) in R
3
. The knot cl(L) is called 

the closed knot of L. A spatial arc L is even if the starting 

front-pop plane P(γ, s) and the terminal front-pop plane P(γ, t) 

are the same. Let -L denote the same spatial arc as L but with 

the opposite orientation. The following observations are 

obtained from the proof of Theorem 1.1. 

Corollary 2.2. For the arc diagram D(L;u) = λu
δ
(L) of an 

oriented spatial arc L for a unit vector u∈S
2
, the following 

properties (1)-(5) are obtained. 

(1) The arc diagram D(L;-u) is the mirror image of D(L;u) 

meaning that the upper-lower relations of the crossing 

points of D(L;u) and D(L;-u) are exchanged all at once. 

(2) If the projection image λu(L) is an arc diagram, then 

the arc diagram D(L;u) is equal to λu(L) up to 

isomorphisms of arc diagrams. 

(3) There are only finitely many arc diagrams D(L;u) up to 

isomorphic arc diagrams for all unit vectors u∈S
2
. 

(4) If the projection image λu(L) is inbound, then the arc 

diagram D(L;u) is an inbound arc diagram. Thus, if L 

is an arc knot, then the arc diagram D(L;x) for the front 

edge vector ux is an inbound arc diagram. 

(5) For an even spatial arc L, the arc diagram D(-L;u) is 

isomorphic to the arc diagram D(L;u) or the inversed 

mirror image D(L;-u) of the arc diagram D(L;u) 

according to whether the orientations of the planes P(γ, 

s) and P(γ, t) coincide or not. 

3. The Knotting Probability 

A chord graph is a trivalent connected graph (o;α) in R
3
 

consisting of a trivial oriented link o (called a based loop 

system) and the attaching arcs α (called a chord system), where 

some chords of α may intersect. A chord diagram is a diagram 

C(o;α) (in a plane) of a chord graph (o;α) in R
3
. A ribbon 

surface-link is a surface-link in the 4-space R
4
 obtained from a 

trivial S
2
-link by surgery along mutually disjoint embedded 1-

handles (see the papers [11, 15] for earlier versions of this 

concept). A chord diagram C corresponds to a ribbon surface-

link F(C) in the 4-space R
4
 by a canonical construction so that 

an equivalence between two ribbon surface-links F(C) and 

F(C’) corresponds to a combination of the moves on a chord 

diagram called M0, M1 and M2 (see the papers [5, 7, 8, 9] for 

details). Let D be an oriented n-crossing arc diagram. A chord 

diagram C with n+2 based loops and n chords is obtained from 

D by replacing every crossing point and every endpoint with a 

based loop as in Figure 1. 

 
Figure 1. Transformation of an oriented arc diagram into a chord diagram. 

Let D be an oriented n-crossing arc diagram, and C the 

chord diagram of D. Let o(s) and o(t) be the based loops in C 

transformed from the starting and terminal points s and t, 

respectively. There is a system A of (n+2)
2
 chord diagrams 

obtained from the chord diagram C by joining the loops o(s) 

and o(t) with any based loops of C by two chords not passing 

the other based loops. Every member A of A is called an 

adjoint chord diagram of C with an additional chord pair. 

Note that the ribbon surface-knot F(C) of the chord diagram 

C is a ribbon S
2
-knot and the ribbon surface-knot F(A) of an 

adjoint chord diagram A∈A is a genus 2 ribbon surface-knot. 

A chord diagram is said to be unknotted or knotted according 

to whether it gives a trivial or non-trivial ribbon surface-knot, 

respectively. The idea of the knotting probability of the arc 

diagram D is to measure how many knotted chord diagrams 

there are in the system A of the (n+2)
2
 adjoint chord 

diagrams constructed from the chord diagram C of D. Since 

there are canonical overlaps in A up to isomorphisms, the 

subsystem A
*
 of A consisting of n

2
+2n+2 adjoint chord 

diagrams of C obtained by removing the canonical overlaps 

is considered. The subsystem A
*
 is classified by the 

following four types (see the paper [10]): 

Type I. Here are the 2 adjoint chord diagrams of C consisting 

of a chord diagram with two self-attaching chords on o(s) and 
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o(t) added and a chord diagram with a self-attaching chord on 

o(s) and a chord joining o(s) with o(t) added. 

Type II. Here are the 2n adjoint chord diagrams of C given 

by additions of n chord pairs consisting of a self-attaching 

chord on o(s) and a chord joining o(t) with a based loop 

except for o(s) and o(t), and additions of n chord pairs 

consisting of a self-attaching chord on o(t) and a chord 

joining o(s) with a based loop except for o(s) and o(t). 

Type III. Here are the n adjoint chord diagrams of C where the 

additional chord pairs consist of a chord joining o(s) with o(t) and 

a chord joining o(s) with a based loop except for o(s) and o(t). 

Type IV. Here are the n(n-1) adjoint chord diagrams of C 

where the additional chord pair joins the pair of o(s) and o(t) 

with a distinct based loop pair not containing o(s) and o(t). 

It is shown that every adjoint chord diagram of the chord 

diagram C of any n crossing arc diagram D is deformed into 

one of the adjoint chord diagrams of type I, II, III and IV of 

the chord diagram C. [10] Consequently, it is justified to 

reduce the (n+2)
2
 adjoint chord diagrams to the n

2
+2n+2 

adjoint chord diagrams. The knotting probability p(D) of an 

arc diagram D is defined to be the quadruplet 

p(D) = (p
I
(D), p

II
(D), p

III
(D, p

IV
(D)) 

of the following knotting probabilities p
I
(D), p

II
(D), p

III
(D), 

p
IV

(D) of types I, II, III, IV. 

Definition.  

(1) Let A1 and A2 be the adjoint chord diagrams of type I 

and assume that there are just k knotted chord diagrams 

among them. Then the type I knotting probability of D 

is defined to be 

p
I
(D) = 

	

	�	
. 

Thus, p
I
(D) is 0, 1/2 or 1 for any arc diagram D. 

(2) Let Ai(i=1, 2, ... , 2n) be the adjoint chord diagrams of 

type II and assume that there are just k knotted chord 

diagrams among them. Then the type II knotting 

probability of D is defined to be 

p
II
(D) = 

	

	�
	
. 

(3) Let Ai (i=1, 2,...,n) be the adjoint chord diagrams of 

type III and assume that there are just k knotted chord 

diagrams among them. Then the type III knotting 

probability of D is defined to be 

p
III

(D) = 
	

	
	
. 

(4) Let Ai (i=1, 2,...,n(n-1)) be the adjoint chord diagrams 

of type IV and assume that there are just k knotted 

chord diagrams among them. Then the type IV knotting 

probability of D is defined to be 

p
IV

(D) = 
	


(
�
)
. 

The knotting probability p(D) of an arc diagram D is 

uniquely determined up to isomorphisms of D. If the 

orientation of an arc diagram D is changed, then all the 

orientations of the based loops of the chord diagram C are 

changed at once. This means that the knotting probability 

p(D) of D does not depend on any choice of orientations of D, 

and thus, the orientation of D can be omitted in figures. Some 

calculations of p(D) for an arc diagram D are done so that 

p
I
(D) = 0 or 1, p

II
(D) = p

III
(D) and p(D) = p(D

*
) 

for any inbound arc diagram D and the mirror image D
*
 of D 

(see the paper [10;Theorem 3.3 (3)] for the proof). The 

knotting probability p(D) has p(D)=1 if 

p
I
(D) = p

II
(D) = p

III
(D = p

IV
(D) = 1 

and otherwise, p(D) < 1. The knotting probability p(D) has 

p(D)> 0 if 

p
I
(D)+p

II
(D)+p

III
(D)+p

IV
(D) > 0 

and otherwise, p(D)=0. The knotting probability 

p(L;u) = (p
I
(L;u), p

II
(L;u), p

III
(L;u), p

IV
(L;u)) 

of an oriented spatial arc L in R
3
 along a unit vector u∈S

2
 is 

defined to be 

p(L;u) = p(D(L;u)) 

for the arc diagram D(L;u)=λu
δ
(L) given by Theorem 1.1, 

which is uniquely determined by the spatial arc L and a unit 

vector u. For the unit vector u =ux, uy or uz, the knotting 

probabilities p(L;±u) are denoted by p(L;±x), p(L;±y) and 

p(L;±z), respectively. As already observed, the knotting 

probability p(L;u) is unchanged by any choice of a string 

orientation in the arc diagram D(L;u). However, because the 

arc diagram D(L;u) may be much different from the arc 

diagram D(-L;u) by definition, the knotting probability p(-

L;u) of the reversed spatial arc-L (that is the same spatial arc 

as L but with reversed orientation of L) may be much 

different from p(L;u) in general. In any case, the unordered 

pair of p(L;u) and p(-L;u) is considered as the knotting 

probability of a spatial arc L which is independent of the 

string orientation. When one-valued probability is needed, a 

suitable average of the knotting probabilities 

p
I
(±L;u), p

II
(±L;u), p

III
(±L;u), p

IV
(±L;u) 

is considered. The following corollary is obtained for a 

special case of a spatial arc L. 

Corollary 3.1.  

(1) If the projection image λu(L) is inbound, then 

p(L;u) = p(L;-u), 

so that if L is an arc knot, then 

p(L;x) = p(L;-x). 

(2) If L is even, then 

p(-L;u) = p(L;u) or p(-L;u) = p(L;-u) 
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for any u∈S
2
 according to whether the orientations of P(γ, s) 

and P(γ, t) coincide or not. 

(3) If L is even and the projection image λu(L) is inbound, 

then the four knotting probabilities 

p(±L;±u) are the same as p(L;u). 

Proof of Corollary 3.1. In [10], it is shown that p(D) = 

p(D
*
) for an inbound arc diagram D and the mirror image D

*
 

of D. By Corollary 2.2 (1) and (4), the arc diagrams D(L;u) 

and D(L;x) are inbound arc diagram with D(L;-u) and D(L;-

x) the mirror images. Thus, (1) is obtained. For (2), the arc 

diagram D(-L;u) is isomorphic to the arc diagram D(L;u) or 

D(L;-u) according to whether the orientation of P(γ, s) 

coincides with the orientation of P(γ, t) or not by Corollary 

2.2 (1) and (5). The assertion (3) is a combination result of 

(1) and (2). This completes the proof of Corollary 3.1. 

4. Computing Some Examples 

It is stated in Corollary 2.2 (3) that for every spatial arc L, 

there are only finitely many arc diagrams D(L;u) up to 

isomorphic arc diagrams for all unit vectors u∈S
2
. However, it 

is a very hard problem to enumerate all the arc diagrams 

D(L;u) even for a simple spatial arc L. By this reason, some 

specific arc diagrams that can be easily drawn from the spatial 

arc L are recommended to compute the knotting probabilities 

of L. By Corollary 3.1, the 12 arc diagrams D(±L;±x), 

D(±L;±y) and D(±L;±z) of the spatial arc L are proposed. In 

this section, the knotting probabilities of three concrete 

examples of even arc knots are computed as Examples A, B 

and C. 

 
Figure 2. The spatial arc L given by the vertex coordinate data: namely, the 

(x, y) vertex coordinates (0, 0), (1, 1), (2, 3), (1, 3), (2, 1), (4, 4), (0, 4), (0, 2), 

(3, 2), (4, 0) of λz (L) in the xy plane and the z vertex coordinate data in the 

figure. 

 
Figure 3. Producing the chord diagram C(L;z) and a simplified chord 

diagram from the projection image λz(L). 

 
Figure 4. Calculations on the chord diagram C(L;z). 

Example A. Consider an even arc knot L in Figure 2 given 

by the projection image λz(L) in the xy plane together with the 

z-coordinate such that the vertex coordinates (x, y, z)=(x, y)
z
 of 

L ordered from the starting point s are given by(0, 0)
0
, (1, 1)

0
, 

(2, 3)
4
, (1, 3)

1
, (2, 1)

1
, (4, 4)

2
, (0, 4)

3
, (0, 2)

3
, (3, 2)

0
, (4, 0)

0
. 

The closed knot cl(L) is a trefoil knot. The arc diagram D(L;z) 

obtained from λz(L) is illustrated in the left side of Figure 3. In 

computing the knotting probability p(L;z) from the chord 

diagram C(L;z) of the arc diagram D(L;z), a simplified chord 

diagram of the chord diagram C(L;z) given by the following 

observation is used to make the computation simpler. 

Observation 4.1. If two based loops are connected by a 

chord not intersecting the other chords, one can replace the 

two based loops with the chord by one based loop without 

changing the knotting probability. 

In the right side of Figure 3, a simplified chord diagram of 

the chord diagram C(L;z) is given. In the use of a simplified 

chord diagram obtained by using Observation 4.1, a 

carefulness is needed in counting the knotted and unknotted 

adjoint chord diagrams. In fact, a calculation on the numbers 

of the knotted and unknotted adjoint chord diagrams of the 

chord diagram C(L;z) is done by using a simplified chord 

diagram of C(L;z) as in Figure 4 (see the paper [10] for the 

details of the calculation). The following calculation results 

are obtained: 

p(L;±z) =p(-L;±z) =(1, 



	�	
,



	�	
,



	�	
) 

by Corollary 3.1, for L is an even spatial arc and D(L;z) is an 

inbound arc diagram. 

 
Figure 5. The spatial arc L given by the vertex coordinate data: namely, the (y, 

z) vertex coordinates (0, 0), (1, 0), (3, 4), (3, 1), (1, 1), (4, 2), (4, 3), (2, 3), (2, 

0), (0, 0) of λx(L) in the yz plane and the x vertex coordinate data in the figure. 
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Figure 6. Producing the chord diagram C(L;x) and a simplified chord 

diagram from the projection image λx(L). 

 
Figure 7. Calculations on the chord diagram C(L;x). 

In Figure 5, the same arc knot L is presented by the 

projection image λx(L) in the yz plane together with the x-

coordinate such that the vertex coordinates (x, y, z) = (y, z)
x
 

of L ordered from the starting point s are given by(0, 0)
0
, (1, 

0)
1
, (3, 4)

2
, (3, 1)

1
, (1, 1)

2
, (4, 2)

4
, (4, 3)

0
, (2, 3)

0
, (2, 0)

3
, (0, 

0)
4
. The arc diagram D(L;x) obtained from λx(L) is illustrated 

in Figure 6, where the chord diagram C(L;x) and a simplified 

chord diagram are also illustrated. A calculation on the 

numbers of the knotted and unknotted adjoint chord diagrams 

of the chord diagram C(L;x) using the simplified chord 

diagram of C(L;x) is done in Figure 7. Then the following 

calculation results are obtained: 

p(L;±x)=p(-L;±x) =(1,



	�	
,



	�	
,
�

	
�	
) 

by Corollary 3.1, for L is an even arc knot and D(L;x) is an 

inbound arc diagram. 

 
Figure 8. The spatial arc L given by the vertex coordinate data: namely, the 

(z, x) vertex coordinates (0, 0), (0, 1), (4, 2), (1, 1), (1, 2), (2, 4), (3, 0), (3, 0), 

(0, 3), (0, 4) of λy(L) in the zx plane and the y vertex coordinate data in the 

figure. 

 
Figure 9. Producing the chord diagram C(L;y) and a simplified chord 

diagram from the projection image λy(L). 

 
Figure 10. Calculations on the chord diagram C(L;y). 

In Figure 8, the same arc knot L is presented by the 

projection image λy(L) in the zx plane together with the y-

coordinate such that the vertex coordinates (x, y, z) = (z, x)
y
 

of L ordered from the starting point s are given by (0, 0)
0
, (0, 

1)
1
, (4, 2)

3
, (1, 1)

3
, (1, 2)

1
, (2, 4)

4
, (3, 0)

4
, (3, 0)

2
, (0, 3)

2
, (0, 

4)
0
. The arc diagram D(L;y) obtained from λy(L) is illustrated 

in Figure 9, where the chord diagram C(L;y) and a simplified 

chord diagram are also illustrated. A calculation on the 

numbers of the knotted and unknotted adjoint chord diagrams 

of the chord diagram C(L;y) using the simplified chord 

diagram of C(L;y) is done in Figure 10. Then the following 

calculation results are obtained: 

p(L;±y)=p(-L;±y) =(1,



	�	
,



	�	
,



	�	
) 

by Corollary 3.1, for L is an even arc knot and D(L;y) is an 

inbound arc diagram. 

 
Figure 11. The spatial arc L given by the vertex coordinate data: namely, 

the (x, y) vertex coordinates (0, 0), (1, 1), (2, 3), (3, 1), (1,-1), (-1, 0), (1, 2), 

(3, 0) of λz(L) in the xy plane and the z vertex coordinate data in the figure. 
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Figure 12. Producing the arc diagram D(L;z) and the chord diagram C(L;z). 

Example B. Consider an even arc knot L in Figure 11 

given by the non-inbound projection image λz(L) in the xy 

plane together with the z-coordinate such that the vertex 

coordinates (x, y, z) = (x, y)
z
 of L ordered from the starting 

point s are given by (0, 0)
0
, (1, 1)

0
, (2, 3)

1
, (3, 1)

-1
, (1,-1)

2
, (-1, 

0)
1
, (1, 2)

0
, (3, 0)

0
. The closed knot cl(L) is also a trefoil knot. 

The arc diagram D(L;z) and the chord diagram C(L;z) 

obtained from λz (L) are illustrated in Figure 12. The knotting 

probability of the chord diagrams C(L;±z) of the arc 

diagrams D(L;±z) has been computed in [10]. The following 

calculation results are obtained: 

p(L;±z) = (



	�	
,



	�	
, 0, 




	�	
), p(-L;±z) = 0. 

In Figure 13, the same arc knot L is presented by the 

projection image λx(L) in the yz plane together with x-

coordinate information such that the vertex coordinates (x, y, 

z) = (y, z)
x
 of L ordered from the starting point s are given 

by(0, 0)
0
, (1, 0)

1
, (3, 1)

2
, (1,-1)

3
, (-1, 2)

1
, (0, 1)

-1
, (2, 0)

1
, (0, 

0)
3
. The arc diagram D(L;x) obtained from λx(L) is illustrated 

in Figure 14, where the chord diagram C(L;x) and a 

simplified chord diagram are also illustrated. A calculation 

on the numbers of the knotted and unknotted adjoint chord 

diagrams of the chord diagram C(L;x) using the simplified 

chord diagram of C(L;x) is done in Figure 15. Then the 

following calculation results are obtained: 

p(L;±x)=p(-L;±x) =(1, 



	�	
,



	�	
,



	
�	
) 

by Corollary 3.1, for L is an even arc knot and D(L;x) is an 

inbound chord diagram. 

 
Figure 13. The spatial arc L given by the vertex coordinate data: namely, 

the (y, z) vertex coordinates (0, 0), (1, 0), (3, 1), (1,-1), (-1, 2), (0, 1), (2, 0), 

(0, 0) of λx(L) in the yz plane and the x vertex coordinate data in the figure. 

 
Figure 14. Producing the chord diagram C(L;x) and a simplified chord 

diagram from the projection image λx(L). 

 
Figure 15. Calculations on the chord diagram C(L;x). 

 
Figure 16. The spatial arc L given by the vertex coordinate data: namely, 

the (z, x) vertex coordinates (0, 0), (0, 1), (1, 2), (-1, 3), (2, 1), (1,-1), (0, 1), 

(0, 3) of λy(L) in the zx plane and the y vertex coordinate data in the figure. 

 
Figure 17. Producing the arc diagram D(L;y), the chord diagram C(L;y) 

and a simplified chord diagram from the projection image λy(L). 
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Figure 18. Calculations on the chord diagram C(L;y). 

In Figure 16, the same arc knot L is presented by the 

projection image λy(L) in the zx plane together with y-

coordinate information such that the vertex coordinates (x, y, 

z) = (z, x)
y
 of L ordered from the starting point s are given by 

(0, 0)
0
, (0, 1)

1
, (1, 2)

3
, (-1, 3)

1
, (2, 1)

-1
, (1,-1)

0
, (0, 1)

2
, (0, 3)

0
. 

The arc diagram D(L;y) obtained from λy(L) is illustrated in 

Figure 17, where the chord diagram C(L;y) and a simplified 

chord diagram are also illustrated. A calculation on the 

numbers of the knotted and unknotted adjoint chord diagrams 

of the chord diagram C(L;y) using the simplified chord 

diagram of C(L;y) is done in Figure 18. Then the following 

calculation results are obtained: 

p(L;±y) = p(-L;±y) = (1,0, 0, 0) 

by Corollary 3.1, for L is an even arc knot and D(L;y) is an 

inbound chord diagram. 

 

Figure 19. The spatial arc L given by the vertex coordinate data: namely, 

the (x, y) vertex coordinates (0, 0), (1, 1), (2, 3), (3, 1), (1,-1), (-1, 0), (1, 

2), (3, 0) of λz(L) in the xy plane and the z vertex coordinate data in the 

figure. 

Example C. Consider an even arc knot L in Figure 19 

given by the non-inbound projection image λz(L) in the xy 

plane together with the z-coordinate such that the vertex 

coordinates (x, y, z) = (x, y)
z
 of L ordered from the starting 

point s are given by(0, 0)
0
, (1, 1)

0
, (2, 3)

1
, (3, 1)

-1
, (1,-1)

-1
, (-1, 

0)
1
, (1, 2)

0
, (3, 0)

0
. Note that the closed knot cl(L) is a trivial 

knot. The arc diagram D(L;z) coincides with the arc diagram 

D(L;z) in Example B. Thus, the following calculation results 

are obtained: 

p(L;±z)=(



	�	
,



	�	
,0, 




	�	
), p(-L;±z) =0. 

This means that even if the closed knot cl(L) of an even 

arc knot L is a trivial knot, the knotting probability p(L;u) 

may not be zero for a general unit vector u. 

 
Figure 20. The spatial arc L given by the vertex coordinate data: namely, 

the (y, z) vertex coordinates (0, 0), (1, 0), (3, 1), (1,-1), (-1, 2), (0, 1), (2, 0), 

(0, 0) of λx(L) in the yz plane and the x vertex coordinate data in the figure. 

 
Figure 21. Producing the arc diagram D(L;x). 

In Figure 20, the same arc knot L is presented by the 

projection image λx(L) in the yz plane together with the x-

coordinate such that the vertex coordinates (x, y, z) = (y, z)
x
 

of L ordered from the starting point s are given by (0, 0)
0
, 

(1, 0)
1
, (3, 1)

2
, (1,-1)

3
, (-1,-1)

1
, (0, 1)

-1
, (2, 0)

1
, (0, 0)

3
. The 

arc diagram D(L;x) obtained from λx(L) is illustrated in 

Figure 21 and is an inbound arc diagram whose under-

closed knot diagram clu(D(L;x)) (that is, a knot diagram 

obtained from D(L;x) by joining the endpoints with an 

under-arc) represents a trivial knot. This means the 

following calculation results (see the paper [10;Theorem 

3.3 (1)] for the proof): 

p(L;±x)=p(-L;±x) =0. 
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Figure 22. The spatial arc L given by the vertex coordinate data: namely, 

the (z, x) vertex coordinates (0, 0), (0, 1), (1, 2), (-1, 3), (2, 1), (1,-1), (0, 1), 

(0, 3) of λy(L) in the zx plane and the y vertex coordinate data in the figure. 

 
Figure 23. Producing the arc diagram D(L;y). 

In Figure 22, the same arc knot L is presented by the 

projection image λy(L) in the zx plane together with the y-

coordinate such that the vertex coordinates (x, y, z) = (z, x)
y
 

of L ordered from the starting point s are given by(0, 0)
0
, (0, 

1)
1
, (1, 2)

3
, (-1, 3)

1
, (-1, 1)

-1
, (1,-1)

0
, (0, 1)

2
, (0, 3)

0
. The arc 

diagram D(L;y) obtained from λy(L) is illustrated in Figure 

23 and isomorphic to the inbound arc diagram given in the 

paper [10; Example 4.5], where the knotting probability is 

calculated. Then the following calculation results are 

obtained: 

p(L;±y)=p(-L;±y) =(1, 



	�	
,



	�	
, 0). 

5. Conclusion 

Given the data of a spatial arc, a procedure to construct 

characteristic arc diagrams and their chord diagrams and 

adjoint chord diagrams is shown in this paper. It is hoped that 

a computer use will, hopefully, configure the procedure up to 

this point fairly automatically.  
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